Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice
نویسندگان
چکیده
BACKGROUND Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. METHODS We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. RESULTS Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. CONCLUSIONS These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney development consistent with hydronephrosis and reveals a novel Keap1 mediated signaling pathway in renal development.
منابع مشابه
Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus
NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral h...
متن کاملKeap1 inhibition attenuates glomerulosclerosis.
BACKGROUND NFE2-related factor 2 (Nrf2) is a master regulatory transcription factor for antioxidant genes. Inhibition of its adaptor protein, Kelch-like ECH-associated protein 1 (Keap1), activates Nrf2. Podocyte injury triggers the progressive deterioration of glomerular damage toward glomerulosclerosis. We examined whether modulation of the Keap1-Nrf2 system has an impact on this process. ME...
متن کاملThe Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway.
Kelch-like ECH-associated protein 1 (Keap1) is a ubiquitin E3 ligase specificity factor that targets transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) for ubiquitination and degradation. Disrupting Keap1-Nrf2 interaction stabilizes Nrf2, resulting in Nrf2 nuclear accumulation, binding to antioxidant response elements (AREs), and transcription of cytoprotective genes. Marbu...
متن کاملNrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice.
Transcription factor Nrf2 (NF-E2-related factor 2) regulates wide-ranging cytoprotective genes in response to environmental stress. Keap1 (Kelch-like ECH-associated protein 1) is an adaptor protein for Cullin3-based ubiquitin E3 ligase and negatively regulates Nrf2. The Keap1-Nrf2 system plays important roles in the oxidative stress response and metabolism. However, the roles Nrf2 plays in prev...
متن کاملCritical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
Arsenic activates nuclear factor erythroid 2-related factor 2 (Nrf2) to induce phase II and antioxidative genes. Here we analyzed arsenic-Kelch-like ECH-associated protein 1 (Keap1) cysteine thiol interaction in Nrf2 activation. Arsenic-based Nrf2 activators, fluorescent biarsenical labeling reagent (FlAsH) and phenylarsine oxide (PAO), were used to probe binding of arsenic to Keap1. Strong flu...
متن کامل